Archive for Along the Backbone

Is there a topic you’d like to see covered on Along the Backbone?

Posted in Along the Backbone Information, Along the Backbone Polls with tags , , , , on February 22, 2012 by Dr. Matt Bonnan

Is there a topic you would like to see covered on Along the Backbone?  Post your comments in this topic thread and let me know.  In the meantime, I will continue to produce new episodes on a variety of evolutionary anatomy topics, from brains to bones, across deep time.

Episode 7: Hands Down, or, Why Velociraptor Could Not Open Doors

Posted in Individual Podcasts and Transcripts with tags , , , , , , , , , , , , on November 5, 2011 by Dr. Matt Bonnan

This podcast was chosen by popular demand by the followers of this blog.  Thanks for your continued interest in Along the Backbone.

The ability to open doors depends on two things: 1) being able to grip the door handle and 2) being able to rotate the hand so that the door handle turns.  Could a hungry Velociraptor turn a door handle to get at you, the delectable human in hiding?

Podcast Teaser:  In the science fiction story Jurassic Park, the predatory dinosaurs known as Velociraptor are able to use their hands and arms to open doors behind which delectable people hide.  My students often ask me if this could actually happen, and more generally, how much I liked Jurassic Park.  My responses are, “no,” and “it was good science fiction!”

References / Further Information

Help select the next story you hear on “Along the Backbone”

Posted in Along the Backbone Polls with tags , , , , , , , on November 1, 2011 by Dr. Matt Bonnan

Time for some feedback: influence which story is produced for “Along the Backbone”:

The polls will close Friday, November 4, at 12:00 midnight!

Episode 6: How the Dentist Came To Be So Important to Mammals

Posted in Individual Podcasts and Transcripts with tags , , , , , , , , , , , , , , , on November 1, 2011 by Dr. Matt Bonnan

Why don’t mammals continuously replace their teeth?  The answer may surprise you.

Podcast Teaser: I hate the dentist.  Well, I like my dentist, but I hate going.  I suspect many of you don’t put a visit to the tooth doctor up on your list of favorite things, either.  You can blame a number of things for the necessity of dentistry: our love of sugar top among them.  But actually the problem is an evolutionary one.  We don’t often stop to think about it, but doesn’t it seem odd that you only get two sets of teeth?  First you have your baby teeth (technically, your milk teeth) and then you get a set of adult teeth.  And you better take care of those adult teeth because when they’re gone they’re gone.  But why is this?  Non-mammals, everything from fish to amphibians to reptiles to birds (well, their ancestors anyways) regularly shed and replace their teeth.  Why should non-mammalian vertebrates have it so good?

References / Further Information

Episode 5: Elephants, Cats, and Ticking Clocks

Posted in Individual Podcasts and Transcripts with tags , , , , , , , , , , , on October 24, 2011 by Dr. Matt Bonnan

Unlike a lizard where the limbs are sprawled out to the sides, most mammals have drawn their limb bones vertically beneath the body.  What are the functional advantages of such a posture? And what does all this have to do with Dr. Bonnan almost being creamed by an African elephant?

Podcast Teaser: I learned the real meaning of the word “awesome” during a close encounter with an African elephant.  A colleague and I were in an animal park in South Africa, and we had spied a large, lone male elephant walking towards our car.  As I was taking pictures of the elephant, our car was suddenly traveling in reverse with my colleague uttering frantic expletives.  It was at this point I noticed that the elephant was picking up speed and coming right for us.  On attempting to turn the car around, we became stuck, and now our fate was left to a very large mammal.  In my cleverness, I rolled up the car window, as if that would protect me from 6 tons of muscle and bone!

References / Further Information

Episode 4: A Brief History of Meat

Posted in Individual Podcasts and Transcripts with tags , , , , , , , , , on October 14, 2011 by Dr. Matt Bonnan

Many of us enjoy eating meat, but few of us pause to think about how important its pre-meal form, skeletal muscle, is for vertebrate life.  Or why you eat different parts of fish and tetrapods for that matter.

Podcast Teaser: I don’t know about you, but I enjoy a good steak, especially fillet minion.  In fact, many of us enjoy eating meat, but few of us pause to think about how important its pre-meal form, skeletal muscle, is for vertebrate life.  Unless you injure your skeletal muscles, you barely notice them – of course, if you’re a body builder, you probably notice them a lot more.  But the contractions of skeletal muscles across the joints in your skeleton do everything from keeping you upright to preventing nasty falls.  Believe it or not, meat is so universal among vertebrate animals that muscles in one area in a fish do very similar things in the same area in your body.  This is because, long ago and 540 million years away, our common ancestor developed two important traits …

References / Further Information

Transcript Available Upon Request.

Episode 3: How Do You Make a Snake?

Posted in Individual Podcasts and Transcripts with tags , , , , , , , , , , on October 11, 2011 by Dr. Matt Bonnan

It seems only fitting that a podcast series called Along the Backbone should discuss the formation of the backbone in one of lengthiest vertebrates: snakes.

Podcast Teaser: Snakes are lizards.  More specifically, snakes are limbless, eyelidless, earless lizards with megakinetic skulls and well-developed salivary glands that often produce venom.  Among the many standout features of snakes, perhaps the most fascinating is how these vertebrates routinely develop a body that will have 120 or more rib-bearing vertebrae and no limbs.  It turns out that a simple but profound difference in the timing of the expression of developmental genes called HOX genes renders snakes limbless, whereas an increase in the frequency of another set of clock-like genes generates their amazing number of vertebrae.

References / Resources:

Transcript available upon request.