Archive for embryology

Episode 4: A Brief History of Meat

Posted in Individual Podcasts and Transcripts with tags , , , , , , , , , on October 14, 2011 by Dr. Matt Bonnan

Many of us enjoy eating meat, but few of us pause to think about how important its pre-meal form, skeletal muscle, is for vertebrate life.  Or why you eat different parts of fish and tetrapods for that matter.

Podcast Teaser: I don’t know about you, but I enjoy a good steak, especially fillet minion.  In fact, many of us enjoy eating meat, but few of us pause to think about how important its pre-meal form, skeletal muscle, is for vertebrate life.  Unless you injure your skeletal muscles, you barely notice them – of course, if you’re a body builder, you probably notice them a lot more.  But the contractions of skeletal muscles across the joints in your skeleton do everything from keeping you upright to preventing nasty falls.  Believe it or not, meat is so universal among vertebrate animals that muscles in one area in a fish do very similar things in the same area in your body.  This is because, long ago and 540 million years away, our common ancestor developed two important traits …

References / Further Information

Transcript Available Upon Request.

Advertisements

Episode 3: How Do You Make a Snake?

Posted in Individual Podcasts and Transcripts with tags , , , , , , , , , , on October 11, 2011 by Dr. Matt Bonnan

It seems only fitting that a podcast series called Along the Backbone should discuss the formation of the backbone in one of lengthiest vertebrates: snakes.

Podcast Teaser: Snakes are lizards.  More specifically, snakes are limbless, eyelidless, earless lizards with megakinetic skulls and well-developed salivary glands that often produce venom.  Among the many standout features of snakes, perhaps the most fascinating is how these vertebrates routinely develop a body that will have 120 or more rib-bearing vertebrae and no limbs.  It turns out that a simple but profound difference in the timing of the expression of developmental genes called HOX genes renders snakes limbless, whereas an increase in the frequency of another set of clock-like genes generates their amazing number of vertebrae.

References / Resources:

Transcript available upon request.